
Concept of quasimonomers and its 
application to some problems of 
polymer statistics 

A. R. Khokhlov 
Physics Department, Moscow State University, Moscow 117234, USSR 
(Received 8 May 1978) 

The concept of quasimonomers is introduced, i.e. the concept of disconnected quasiparticles, which 
can be effectively substituted for a chain of connected monomers in the analysis of volume interactions 
in polymeric coils. Such a substitution becomes possible because each monomer of an infinite homo- 
geneous chain is 'standardly surrounded' by the other monomers (primarily by near neighbours along 
the chain) and solvent molecules. This 'standard surrounding' renormalizes the monomer characteristics 
in such a way that each monomer can be considered as a disconnected quasiparticle, the properties of 
which do not coincide with the properties of the initial monomer. The application of the concept of 
quasimonomers to the analysis of volume interactions in inhomogeneous macromolecules (finite linear 
macromolecules, macromolecules with defects and branched macromolecules) leads to results which 
differ from the results of classical Flory-type theories. This is connected with the fact that the inter- 
action characteristics for these macromolecules turn out to be dependent on the positions of corres- 
ponding monomers in the chain. The following topics are considered with the help of the method of 
quasimonomers: the 0 behaviour of f inite chains, of chains with defects and of branched chains; the 
partial specific volume of polymeric macromolecules; and the relation between the polymer chain 
models. In Appendix 2 the good solvent behaviour of branched macromolecules is also discussed. 

INTRODUCTION Throughout this paper we shall deal with dilute polymer 
solutions (i.e. with the isolated macromolecule surrounded 

The Flory-Huggins theory ~ is now the most widely used by the solvent), because it is for these solutions that the 
theory of polymer solutions. However, it has some short- effects under consideration are.most important. 
comings and among them is the fact that the monomer- The results obtained are not dependent on the choice of 
monomer volume interactions are described by the single the specific model of the polymer chain. However, in order 
parameter X, which is independent of the polymer concen- to be precise we shall always imply the model of 'interacting 
tration in the solution and of the position of interacting beads on a flexible immaterial filament' (Figure 1). The 
monomers in the chain. This shortcoming was partly problem of correlation of the results obtained for this model 
eliminated in the so-called 'new' Flory theory (see, for with the results for other models of the polymer chain will 
example, ref 2); in this theory the parameter X depends on be considered below. 
concentration. The concept of quasimonomers will be introduced in a 

At the same time, as far as the author knows, the depen- 
dence of the parameters characterizing the monomer- 
monomer volume interactions (such as X*) on the position 
of interacting monomers in the chain has not hitherto been 
considered. It will be shown below that this dependence 
exists and is important in the theory of dilute polymer 
solutions. In order to study this dependence it is useful to 
introduce a picture of the polymeric coil as a low density 
cloud of special quasiparticles-quasimonomers. 

In this work we first formulate the concept of quasimo- 
nomers and, using this concept, we consider the dependence 
of monomer-monomer interaction parameters on the posi- 
tion of monomers in the chain. We then consider the physi- 
cal problems of polymer statistics, which can be solved with 
the help of this concept. 

* In order to characterize the monomer-monomer interaction we 
shall use the virial coefficients B, C... (more exactly, the virial co- Figure 1 Model of beads: the polymer ic chain is represented as a 
efficients of the interaction of quasimonomers, see below) instead long flexible immaterial filament, on which interacting beads are 
of X strung 
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purely qualitative, intuitive way. The corresponding mathe- appears as a result of the renormalization of  the interactions 
matical foundation can be found in ref 3. of bare monomer due to the presence of neighbouring chain 

monomers. Roughly speaking, these monomers 'interfere' 
in the interactions of the bare monomer and renormalize 

CONCEPT OF QUASIMONOMERS them. 

Quasimonomers are similar to quasiparticles, which are 
It is well-known that at large degrees of  polymerization (N) well-known in condensed matter physics in the sense that 
the average density of monomers in tile volume of  the coil they represent the collective properties of all the monomers 
is low and tends to zero when N ~ oo. We first suppose that in of  the chain. Each monomer contributes to the characteris- 
order to calculate the free energy of mixing of  monomers tics of each quasimonomer. In fact, each monomer can 
with the solvent we can imagine that the polymeric coil is a 'interfere' in the interactions of the bare monomer of each 
cloud of  disconnected monomers (this picture is used, for quasimonomer. 
example, in the Flory theory). Then at large N this cloud However, the probability of  such an 'interference' differs 
will be very dilute. This implies that the number of  binary depending on i, the number of  monomers along the chain 
interactions of  monomers in the cloud (which are described between the monomer under consideration and the bare 
by the second virial coefficient, B) prevails over the number monomer. In order to 'interfere' the given monomer must 
of  interactions of  higher order (which are described by the approach the bare monomer, i.e. the section of  the chain 
third and fourth virial coefficients, C, D . . .  etc) so these between these two monomers must form a loop. If  this 
latter interactions can be neglected with high degree of section of the chain is not perturbed by volume interactions, 
accuracy. Thus, the properties of polymeric coils at large the probability of  loop formation depends on i as i -3/2 (at 
N depend only on one parameter B anaong all the characteris- large enough i). Thus the contribution of  a given monomer 
tics of monomer -monomer  interactiont, to the characteristics of a given quasimonomer decreases 

This shows the universality of  the behaviour of poly- when i increases as i -3/2 ~. 
meric coils 4. The properties of polymeric coils depend in a It is easy to see that the cloud of  N disconnected mono- 
universal manner on the second virial coefficient, B, inde- mers localized in the volume of  a polymeric coil, is very 
pendent of  the specific character of  the forces forming this dilute at large N. Thus it is sufficient to take into account 
virial coefficient, only binary interactions of  quasimonomers (coefficient B*); 

However, the above consideration does not take into interactions of higher order can be considered as small cor- 
account the fact that the monomers are not distributed inde- rections in this case. 
pendently in the 'cloud',  but are connected in the chain. 
Thus, in spite of  the low value of  the average monomer den- 
sity in the coil at large N, the local density of  other mono- THE MODEL 
mers near the given monomer is generally not low and does 
not decrease when N ~ oos. This high local density is caused Before proceeding to the applications of the concept of quasi- 
by monomers which are close to the given monomer along monomers to some problems of  the statistical physics of poly- 
the chain. The second virial coefficient is insufficient to met solutions it is necessary to define the polymer chain model 
describe the case o f  high density and thus the above formula- more exactly. It has already been mentioned in the Introduc- 
tion of  the universality concept is not valid, tion that we shall consider the model of ' interactingbeads on a 

However, it is intuitively clear that the low value of  the flexible immaterial filament' (see Figure 1). We shall assume 
average monomer density in the coil must lead to some kind that the chain of  beads is gaussian, i.e. that the conditioned 
of universality. In practice, this turns out to be so 3. This probability that the (/" + 1)th bead is situated at E'j+I, pro- 
universality can be explained as follows. Let us consider vided that the jth bead is situated at 2" i, is equal to: 
the interactions in the polymeric coil of  the remote parts of 
the chain instead o f  the interactions of  th~ monomers them- g(~'+l - 2"/) = 2~a2 exp[ -3 (~ j+ l  - ~])2/2a2] (1) 
selves. The small value of  the average density in the coil 
implies that the binary interactions of  the parts of  the chain 
prevail over their higher order interactions. Analogous to the It can be seen that the value of  a in equation (1) is the 
above consideration, such a dominance of  binary interactions average spatial distance between two subsequent monomers 
must lead to universality, but this universality must be ex- along the chain. 
pressed in terms of  the universal dependence on some effec- We shall assume further that the beads (or monomers) 
tire renormalized second virial coefficient of  the interaction interact with the usual potential o f  the type shown in 
between the parts of the chain B* (instead of B). Figure 2. At small distances monomers repel each other due 

We have seen that this kind of  universality is connected to their hard cores; at larger distances the interaction has an 
with the picture of  the polymeric coil as a cloud of dis- attractive character. We shall consider only short range 
connected particles. Thus, we suppose (for the more strict forces of monomer -monomer  interaction. We denote the 
treatment see ref 3) that in order to consider the effect of radius of  interaction as r 0 and the corresponding volume 
monomer -monomer  interactions, the polymeric coil can be v ~ r0 3. 
represented as a cloud of  N disconnected particles - The question naturally arises as to whether the results ob- 
quasimonomers. In contrast to monomers, the quasimono- tained for the rather artificial model described can be applied 
mers interact with the renormalized characteristics [virial to real polymer chains. This question is considered in 
coefficients B*, C*, D * . . .  = f (B, C, D . . . ) ,  instead of  Appendix 1 where it is shown that each polymer chain can 
B, C, D . . .  ] ,  which effectively take into account the chain be related to an equivalent chain of beads with correlations 
connectivity. The character of  the relationship B* = given by equation (1) in such a way that all the macroscopic 
B*(B, C, D . . . )  is considered in detail in ref 3. Each quasi- 
monomer is based on its bare monomer; the quasimonomer ~ If the section of the chain forming the loop expands with co- 

efficient a due to volume interactions, then this dependence is 
1" x, which is used in the Flory theory instead of B, is related to B. modified as a -3 i-3/2 

e0 
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monomer is perturbed by volume interactions, then 
2xB*(i) ~ v . i -3/2a - 3. 

It is essential that at the 0 point only the sum of all z~dY*(i) 
(and not each contribution taken separately) becomes zero. 
Thus, the dependence on r is not indicated in the estimation 
of  2xB*(i). 

0 BEHAVIOUR OF FINITE CHAINS AND CHAINS WITH 
l DEFECTS 

The introduction of quasimonomers does not lead to new 
effects in comparison with the Flory theory in the case of  
infinite and homogeneous polymer chains since in this case 
B is simply replaced by B* in all the Flory expressions. 
However, real polymer chains are always inhomogeneous; 
even if the chain is linear and has no structural defects, it is 
always finite. The new effects connected with the concept 
of quasimonomers (the dependence of  B* on the position 
of interacting monomers in the chain) become apparent only 
for inhomogeneous chains. 

First of all we shall consider a finite polymer chain con- 
sisting of N monomers, or, more specifically, the behaviour 

r ~ of  such a chain near the 0 point, i.e. near the point, at which 
Figure 2 Typical potent ial  U(r) for  the interaction of beads; r is B* = 0. This problem has been studied by the author 3. The 
the distance between the beads corresponding results are obtained from the point of view 

of  the concept of quasimonomers, and, as everywhere in this 
paper, by means of  semiqualitative estimations. 

conformational characteristics of  two corresponding coils The binary collision of  two quasimonomers, i.e. of two 
will coincide. Thus the fact that we shall consider this parts of the chain, is characterized by the virial coefficient 

B* cnly for an infinite chain. In the case of  a finite chain model throughout does not lead to a loss of  generality: 
it is easy to reformulate the results for any other model by some of  the monomers which contribute to B* for an infi- 
means of relating the equivalent model of  beads to it (see nite chain are absent (Figure 4); thus the virial coefficient 
Appendix I). B* cannot be realized entirely. If  the bare monomers of two 

In particular, in Appendix 1 it is shown that for flexible quasimonomers are situated at a distance of  i 1 and i2 mono- 
polymer chains with the usual interactions between the parts mers respectively from the nearest ends of the chain, it is 
of  the chain, the parameters v ~ r 3 and a 3 of the equivalent 
model of beads are of  the same order of  magnitude v ~ a 3 
(Figure 3a). Since we shall deal further only with flexible ( ~""~  _ 
chain polymers, we shall assume that the relation v ~ a 3 is 
valid. 

The following fact is also to be noted. B* is the sum of t " "  
the contributions from the interaction of  bare monomers, 
which is equal to B, and of  the renormalizing contribution 
due to the 'interference' of other monomers. It is clear, 
that for flexible chains (v ~ a 3, Figure 3a) this 'inter- 
ference' is so essential that both contributions are of  the 
same order of  magnitude. Thus, on the one hand, the be- a b 
haviour of  B* is qualitatively similar to the behaviour of  B. 

Figure 3 The equivalent models of beads (a) for  f lex ib le and (b) 
i.e. B*  is o f  order v at high temperatures and becomes zero for stiff polymer chains 
at some lower temperature; on the other hand, B* differs 
essentially from B[(B* - B)/B ~ 1 ].  In particular, the 
Boyle temperature (B = 0) differs considerably from the f "  
temperature at which B* = 0. At this latter temperature the 
effect of  the monomer -monomer  interaction vanishes, and 
thus we identify this temperature With the Flory's 0 point 3'4. A i / ' ' ' ~ "  

It is thus seen that B = vr is an estimation which can be 
used for B* in the model under consideration, where r = / ~ ~  
( T -  O)/T is the relative temperature departure from , / /  
the 0 point. ~ ( '  

B* is the sum of the contributions from each monomer y )  
along the chain. Taking into account the estimation for B* / 
and the fact that the contribution AB* (i) caused by the 
monomer which is situated i monomers away f rom the bare Figure 4 The coll ision of two  parts of the chain. Monomer A 0 is 
monomer varies with i as i -3/2, it is easy to show that AB*  situated at the end of the chain. Due to the absence of monomers 

A 1, A 2 . . . .  which would  be present in the case of  inf in i te chain, 
(i) ~ v.i -3/2. If the chain between the bare and the given the virial coefficient B * cannot be realized entirely 
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easy to understand (see above and Figure 4) that the diffe- the chain is much more essential than accounting for the 
rence between the virial coefficient of  the binary interaction corrections due to the chain ends, i.e. due to the presence 
of  such quasimonomers and B* is of  order of other sorts of monomers at the ends of  the chain. Accoun 

ting for the former corrections gives rise to a term ~ 1 in 
= = equation (2) whereas accounting for the latter gives rise to a 

~ v ~ j - 3 / 2 + v ~ j - 3 / 2 ~ v ' i ~ l / 2  +v.i~l/2 term ~ N- I /2 .  
It is easy to see from equation (2) that o~ 2 = 1 at i =  

j=il j=i2 Co/N1/2C1 ~ N -1/2. Thus the temperature 0~, at which 
or2 = 1, does not coincide with the true 0 temperature (the 

or, in other words, this difference is proportional to the temperature at which B* = 0) for finite chains: (0a - 0)/ 
difference An between the actual local monomer density at 0 "" N -1/2, Oc~ > O. Moreover, at the true 0 point ~2 = 1 - 
the point of collision o f  bare monomers and the local den- CO < 1, i.e. the polymeric coil is contracted, and this con- 
sity, which would occur at this point in the case of  an in- traction can be considerable, because CO is of  the order of  
finite chain, unity. 

It can be seen that the second virial coefficient o f  inter- It may be seen that for every value of  the type (RP)[ 
action between two quasimonomers depends on the posi- (RP) 0 with some p ~= 2 we obtain an expression similar to 
tion of corresponding bare monomers in the finite chain, equation (2) but with different numerical coefficients from 
In terms of  the Flory theory this would mean that the para- first order perturbation theory. Thus the temperature at 
meter X depends on the position of  the interacting mono- which this value is equal to unity will differ from the true 
mers in the chain. 0 temperature, the relative difference being of  the same order 

The sign of  the corrections to B* near the 0 point due ~N -1/2, but with a different numerical coefficient (this 
to the finite nature of  the chain is now discussed. When the coefficient will depend on p). Tile same is true for the 
usual forces of  monomer-monomer  interaction are present temperature at which the osmotic second virial coefficient 
(Figure 2) the second virial coefficient, B, is the first among A 2 becomes zero, 0 A 2. 3 
the virial coefficients to change its sign when the tempera- It can be concluded that for finite chains there exists a 
ture is lowered. This means that since B* = B*(B, C, D . . . ) ,  0 region (and not the 0 point) of relative width A0/0 
the value of B is negative at the 0 point (where B* = 0), be- N -1/2. The 0 region is situated above the true 0 tempera- 
cause B must effectively compensate in the expression for ture. Depending on which property is used for the 
B* for the contributions from the other virial coefficients determination of  the 0 conditions we obtain different 
which remain positive when B has become negative. Fur- points within the 0 region. The true 0 point (at which 
ther, the corrections to B* due to the finite nature of  N are B * = 0) can be determined by means of  the extrapolation 
connected with the increase of  the role of  the interactions N ~  oo. 

of bare monomers in comparison with the renormalizing We now consider some experimental verifications of  the 
interactions (some of  these latter interactions are not rea- results obtained. It must be noted that the new effects to 
lized near the ends of the chain), i.e. by the increase of the which the application of  the method of  quasimonomers 
role of B in B* = B*(B, C, D . . . ) .  Since B < 0, the correc- leads are rather small for linear finite chains (relative order 
tions to B* are negative, i.e. they correspond to the effec- N- l / 2 ) .  Thus, as far as the author knows, systematic experi- 
rive attraction, mental studies of the influence of  the method of  determina- 

The most simple method of  consideration of the 0 beha- tion and of  the number of  monomers in the chain on the 0 
viour of polymeric chains is the perturbation theory (see, temperature have not hitherto been carried out. However, 
for example, ref 6). In order to take our results into account the accuracy of  computer experiments allows us to deal 
it is necessary to replace the binary cluster integral B by B* with these problems and the results obtained in reports of 

constantx v t I/2 +x t 1/2 - ( "'i- .'~- ) in the sums of  the pertur- this kind are in agreement with our approach: here we give 
bation theory 6 where the numerical constant is of the order some examples. It can be seen from the Figure 11 of ref 8, 
of  unity. From first order perturbation theory we obtain that the first correction to the value of the fourth reduced 
the expansion factor, ~, of  a polymer chain 3 § : moment of  the mean square radius of  gyration has the rela- 

tive order N -1/2 at the 0 point (and not N -1, as supposed 
(R 2) by the authors). In ref 9 the 0 temperature was determined 

ot 2 = - 1 + C17N 1/2 - C O (2) by the condition c~ 2 = 1 (temperature 0a) and it was shown 
(R 2)0 (see Table 2 ref 9) that 0~ decreases when N increases, indi- 

cating the effective attraction at the 0 point (in the case of  
Here (R 2) and (R 2) 0 are the mean square end-to-end dis- the effective repulsion the trend would be the opposite). 
tances of  the chains with and without monomer -monomer  In ref 10 the dependence of  the temperature OA2 at which 
volume interactions; C1 and CO are numerical constants of  A2 = 0 on N -1/2 was studied (see Figure 2, ref 10). It was 
order unity. The estimations B* ~ vr and v ~ a 3 (see above) shown that at large N this dependence is linear and that OA2 
have already been taken into account in equation (2). The decreases when N increases. All these facts are in agree- 
third term in equation (2) appears as a result of the correc- ment with our results. 
tions due to the finite nature of  N. In ref 11 the average potential of the interaction of two 

First of  all, it can be concluded from equation (2) that 
polymeric coils at the 0 point was calculated as a function 

accounting for the corrections due to the finite nature of of  the intercoil distance by the Monte Carlo method. It was 

§ The three body collisions of the remote parts of the chain (which shown that this potential does not correspond to the ideal 
are described by the coefficient C*) also give the corrections to the gas (as in the Flory theory), but corresponds to attraction 
usual expression for the first order perturbation theory ~,7. These at large distances and to repulsion at smaller distances. This 
corrections correspond to the effective repulsion at the 0 point and 
apparently play a less important role than those in equation (2) is in accord with our result that the parameters describing 
because: (a) they are of order l/In N(see ref 3); (b) computer experi- the interaction of  quasimonomers depend on the position 
ments indicate effective attraction at the 0 point (see below), of  corresponding bare monomers in the chain and thus these 
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parameters cannot oecome zero for all the quasimonomers We saw above that in the case of a finite linear chain, the 
simultaneously. The effect obtained in ref 11 was attributed absence of  sections of  the chain which are necessary for its 
in ref 12 to the non-local nature of  the monomer-monomer  homogeneity lead to effective attraction at the 0 point. In 
interaction. However, the corrections due to the non- the case of  branched polymers we expect the opposite situa- 
local nature are of  relative order 1/N (see ref 12), whereas tion in which the presence of additional sections of  the 
the corrections studied above due to the dependence of  the chain (more than necessary for homogeneity) must lead to 
interaction parameters on the position of  bare monomers in effective repulsion at the O point*). This effective repulsion 
the chain are of  relative order N -1/2. Thus it is natural to is due to the 'extra interference' in the interaction of bare 
assume that it is these latter corrections which are responsible monomers, additional to the 'normal interference', which 
for the results obtained in ref 11. would exist in the case of  a linear infinite chain. By analogy 

Finally, it should be noted that the notion of a 0 region with the above section we can say that this 'extra interfe- 
was originally introduced in refs 8 and 13, based on the rence' leads to a second virial coefficient for the interaction 
analysis of  computer data. However, in these reports it was of two quasimonomers k and l which differs from B*. the 
assumed that the 0 region remains finite even when N--" ~ corresponding difference being proportional to v(Ankv) + 
This result was apparently due to the inexact extrapolation v(Anev), where ~ l i  is the excess of  local monomer density 
to N --* oo, which was considered to be linear in the coordi- near the ith bare monomer over the local density which 
hates 0 and l/N; in fact the extrapolation is linear in the co- would occur at this point in the case of an infinite linear 
ordinates 0 and N -1/2. chain. 

The 0 behaviour of a polymer chain with defects (for Thus the problem splits into the following two parts. 
example, inclusions of other sorts of monomers)is now First of  all it is necessary to obtain the values of  An i for 
considered. A chain with defects is another example of an each monomer of the macromolecule. Then we must calcu- 
inhomogeneous chain, and thus the application of  the late the conformational characteristics of the macromole- 
method of  quasimonomers to this problem must lead to cule (to be precise we shall deal further with the expansion 
new effects. The corresponding treatment can be found in factor, c~, with respect to the completely unperturbed 
ref 3, so we shall not repeat it here. We only note that when dimensions), taking into account the fact that the monomers 
the concentration of  defects in the chain is large enough, its k and l of  this macromolecule interact with a second virial 
influence on the 0 behaviour can be essential (in contrast to coefficient: 
the influence of the finite nature of the chain and is accessible 
to observation even in rough experiments 14. A further study B* + constant [(~nkv)v + (2XneV)V] (3) 
in this field will allow us to verify the relations obtained in 
ref 3. (constant = a numerical constant of  order unity). Each of 

these two parts of the problem is solved by standard methods. 
here we shall describe them only briefly. 

0 BEHAVIOUR OF BRANCItED MACROMOLECULES It is easy to obtain local monomer densities in the com- 
pletely unperturbed state, when all the chains of a branched 

In this section we shall consider the behaviour of  comb- macromolecule are gaussian coils. However, it turns out 
branched and star-branched macromolecules in 0 solvents, that even near the 0 point of  a linear polymer the branched 
Experimental studies of  this problem ~s have revealed con- macromolecule is not really unperturbed, but expands due 
siderable deviations from Flory-type theory, which was to the additional repulsion described above. Thus the ques- 
developed for branched polymers 16. It was shown that at tion arises: how do we obtain the local density for the ex- 
the 0 point for the corresponding linear polymer the expan- panded macromolecule? It is natural to assume in this case 
sion factor of  the branched macromolecule, ct 2, is essen- that the local density is equal to the unperturbed local den- 
tially larger than unity and the osmotic second virial coef- sity divided by (a ')  1 is the expansion factor of  the part of  
ficient A 2 is larger than zero, whereas according to the nmcromolecule; the monomers of  this section are respon- 
theory 16 we should observe O~ 2 = 1 and ,4 2 = 0 at this point, sible for the main contribution to the excess density An 
The temperature OA2 at whichA2 =0  and the temperature (a' is not necessarily equal to ct, the expansion factor of  the 
0,~, at which o~ 2 = 1, are essentially lower than the 0 tempera- entire macromolecule). In particular, for the comb-branched 
lure for linear polymers and do not coincide with one macromolecule with a >> 1 (i.e. for the thick comb) the 
another. These deviations are so large that they cannot be main contribution to An for the majority of monomers is 
explained only by the presence of anomalous groups at the due to those monomers which are situated in the section of  
branching points and at the end-points, the comb surrounding a given monomer of  the type encircled 

The existence of  considerable deviations from the Flory by a dotted line in Figure 5 (the length of  this section along 
theory is not surprising. The structure of  comb-branched the backbone is of  the same order as the length of  branches). 
and star-branched macromolecutes is highly inhomogeneous, We call the spatial organization of the comb-like molecule 
i.e. it differs essentially from the structure of  linear infinite on this level its secondary structure ~7. We can see that the 
chains, and we have seen that for inhomogeneous chains the value o f  a '  mentioned above is in this case the expansion 
Flory approach must be modified with the help of  the con- factor on the level of  secondary structure. Using this pro- 
cept o f  quasimonomers; this modification is carried out cedure ~' appears in equation (5) for the expansion factor, 
below. ~, of  the entire comb-like macromolecule, in the case o >> 1 

The comb-shaped and star-shaped macromolecules are (for the calculation o f u  I see below). 
characterized by the following parameters: N, the total The second part of  the problem is the determination of  
number of  monomers in the macromolecule; n, the number the expansion factor of  the macromolecule, the second virial 
of  branches; and o, the ratio of  the number of  monomers in 

* It must be noted that the effective attraction due to the finite 
the branches to the number in the backbone. We shall assume nature of branches and of the backbone also exists here, but the 
that N >> 1 and n >> 1 ; a can take any value from 0 (linear simple analysis shows that it is always much weaker than the effective 
polymer) to oo (star-branched polymer), repulsion; thus we shall not take it into account further 
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~ ~ In equation (5) we still have the unknown coefficient a' 
~ ,  - -  ~ ! ~ , , ~  ~ ~  ~ - the expansion factor due to the monomer-monomer 

interaction for the secondary structure. The number of 
monomers in the region of secondary structure, encircled 

~ " with a dotted line in Figure 5, is of order ~ aN/n  and the 
f ~ " ~  " ~ i ~ _  number of branches n' ~ o; thus the same equation as for 

the star with o branches and the total number of monomers 
~ oN/n  must be valid for a' in the orders of magnitude, i.e.: 

~ ~ (d~)5 _ (e,)3 = r N o + o3(o~') -3 (7) 

j ~  I ~ The solution a' of this equation is substituted into equation 
t (5).  
I We now discuss the difference between the corrections to , 
I the Flory-Ptitsyn equations obtained in this work and in 
I ref 15 where the anomalous 0 behaviour of branched poly- 
I mers was attributed to the influence of three body inter- 

F I ~, actions of the remote parts of the chain. The order of mag- 
f ," L_,~,~ 1 nitude of the corresponding corrections can be obtained if 

S " in all the Flory-Ptitsyn expressions B* is replaced by B* + 
(nv)v,  where n is the average monomer density in the coil. 

J ~ ~ ' N  At the same time, in our approach, B* is replaced by a term 
of order B* + (Any)v,  where An is the local monomer den- 
sity near the given monomer minus the local density in the 

• case of an infinite linear chain. It is easy to see that for 
"~ comb-branched polymers An >> n and thus our correction is . ~. 

" much more essential than that obtained in ref 15; however 
Figure 5 Comb-like maeromoleeule. The section of 'secondary for star-branched polymers ~ ~ n, and thus both approaches 
structure' is encircled by the dotted line must give corrections of the same order of magnitude. 

Hence it is clear that the theory ~s is in satisfactory agree- 
ment with experiment in the case of star-branched polymers 

coefficient (equation 3) of the interaction of each pair of and fails to predict the correct results for comb-branched 
monomers being known. This can be carried out by means polymers. For star-branched polymers the corrections ob- 
of the standard Flory method I modified by Ptitsyn 16. This tained in ref 15 had the correct order of magnitude and the 
method is well known, so we shall not reproduce the corres- correct dependence on n and a. For comb-branched poly- 

mers these corrections are much smaller than the corrections 
ponding calculation here, but simply quote the equation in equations (4) and (5). 
obtained for a. This equation has different forms depend- From equations (4)-(7) it is easy to obtain the necessary 
ing on the value of o, due to the different geometries of the information concerning the expansion of branched polymers. 
macromolecules: First let us consider the value, so ,  of the expansion at the 

(a) Case 1: o ,~ 1 (the thin comb) true O point of a linear polymer (r = 0). From these equa- 
tions it follows for each of three cases: ot 5 - a 3 = rN 1/2 + (na) 1/2 (4) 

(b) Case 2:1 ,~ o ,~ n (the thick comb) Case 1: a 5 - a 3 ~ (na) l /2  

et 5 - ot 3 = r N 1 / 2 o  3/2 + n l /2o  5/2 (a') -3 (5) Case 2: a 5 - a 3 "" nl/2ol 1/8 

(c) Case 3: o >> n (the star) Case 3: a 8 - a 6 ~ n 3 (8) 

c~ 5 - (x 3 = r N 1 / 2 n  3/2 + n3a -3 (6) The value of the relative lowering of the Oa temperature 
rot = (0 - 0ot)/0, determined by the condition a 2 = 1, ap- 

Here r = ( T -  O)/T, where 0 is the true 0 temperature for pears to be equal for each of three cases: 
the linear polymer (i.e. B* = 0 at T= 0). 

It must be noted that all the numerical coefficients of Case 1 : rot ~ (no)  1/2 N - l ~  2 
the terms on the right-hand sides of equations (4)-(6) have 
been omitted. In fact for flexible chains there is a numerical Case 2: rot ~ (n /N) l /2 .o  
factor of the order of unity before each term (i.e. for the case 
v ~ a3), which is constant for a given polymer-solvent sys- Case 3: rot ~ n 3 / 2 N - 1 / 2  (9) 
tern. The first term on the right-hand side of equations 
(4)-(6) is the same as in the Flory-Ptitsyn theory 16. This The relative lowering rA2 of the OA2 temperature, deter- 
would be the only term if the second virial coefficient of the mined by the condition A 2 = 0, turns out to be of the same 
interaction of all the quasimonomers were equal to B*. The o r d e r  (TA2 ~ Tot ) but with a different numerical coefficient. 
second term is the specific correction, which appears due to (rA2 can be obtained from the generalization of the Flory 
the corrections to B* in equation (3). theory of the excluded volume of a polymeric coil ~, analo- 
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panied by the formation of 'free volume' which is inacces- 
sible for the molecules of solvent. If this is the case we can 
write an expression for the partial specific volume: 

K 
¥ =v  0 + -  +K'S (11) 

N 

where S is the average probability of the contact per 
monomer. 

However, in ref 18 is was assumed that S is proportional 
to the average monomer density in the coil, whereas it is 
clear that S is proportional to the local monomer density. 
Thus, in order to test the validity of this hypothesis of the 
free volume, it is necessary to reconsider the expression for 
S proposed in ref 18. 

The value of S can be obtained with the help of argu- 
ments analogous to those used above~ when the concept of 
quasimonomers was introduced. For infinite chains the 

Uo average probability of the contact per monomer is some finite 
IIN value, S*, the main contribution to S* being from contacts 

Figure 6 Dependence of u on N -1 obtained in ref 18 between monomers which are close to each other along the 
chain. We then consider a finite chain of  N monomers. For 
this chain, the probability S for each monomer of the chain 

gous to the above generalization of the Flory calculation for is less than S*, because there is no contribution to S from 
a2.) The same conclusion can also be drawn for the lower- contacts with the parts of the chain which would be present 
ing of the 0 temperature determined by any other condition, in the case of an infinite chain (compare with Figure 4). By 
Thus equations (9) determine the width of the 0 region for analogy to our treatment in the previous sections it is easy to 
branched polymers. In contrast to the linear case the true see that (S* - Si)/S* ~ i-1/2a-3, where i is the number of 
0 temperature is here situated at the upper boundary of this monomers between the given monomer and the nearest 
0 region, chain-end, S i is the probability of contact for a given mono- 

As to the comparison of equations (8) and (9) with the met and a is the expansion factor of the coil. Thus the ave- 
experimental data in ref 15 (for 0~, OA2, and C~o), the theory rage contact probability, S, is equal to: 
developed allows to diminish considerably the deviations g "  
from experiment in comparison with the theory ~s. How- S = S* 
ever, we do not set out here the corresponding calculations, N1/2a 3 (12) 
because in order to test equations (8) and (9) it is necessary 
to perform numerous measurements in each of three regions Substituting equation (12) into (11), we obtain for the par- 
of variating o. tial specific volume: 

The theory developed above deals only with the 0 beha 
viour of branched polymers. It turns out that this theory K K"K'  
cannot be directly applied to the good solvent behaviour of 7 = (v0 + K'S*) + (13) 
branched polymers, which is considered in Appendix 2. N N1/2a 3 

The last term decreases more slowly than N - 1  when N ~ oo. 

PARTIAL SPECIFIC VOLUME It must be noted that according to equation (12) the ave- 
rage probability of contact increases with N. At the same 

In this section we shall consider the dependence of partial time, experiment 18 shows that ~ decreases with N. Thus, 
specific volume ~ of polymer solutions (i.e. the volume per in order to relate equation (13) to the experimentally ob- 
monomer) on the number of monomers N, in the macro- served behaviour it is necessary to assume that K '  < 0, i.e. 
molecule. It turns out that this problem can be analysed that the free volume is negative. This means that two 
by methods analogous to those described above, monomers in contact occupy a smaller effective volume than 

For linear macromolecules we expect the following de- two separated monomers. 
pendence of partial specific volume on N: Further analysis of experimental data obtained in ref 18 

however, shows that the hypothesis of a negative free volume 
= vo + KIN (10) is also unsatisfactory. If this hypothesis were valid, then the 

increase in the degree of branching would lead to a decrease 
where the second term is due to the presence of anemalous of 7; however, experiment shows the reverse trend Is'2°. 
groups at the ends of the chain. (K is used in this section Moreover, the value of ~ should be strongly dependent on 
to denote the constants, which are independent of N.) How- the polymer concentration in the solution - this also was 
ever, in experiments 18-20 it was noticed that the depen- not observed experimentally is. 
dence V(N) (as well as dn/dc(N), where dn/dc is the refrac- Thus the comparison of the results obtained by correct 
tive index increment - its value is connected with ~') has calculation of the number of contacts in a polymeric coil 
the form shown in Figure 6, which indicates that there are with experimental data shows that the effects, which were 
terms in ~ decreasing at large N more slowly than N -1. observed in refs 18-20, are not connected with the forma- 

In order to explain this fact it was assumed in ref 18, tion of positive or negative free volume between the mono- 
that each monomer-monomer contact in the coil is accom- mers in contact. 
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the inhomogeneity of  the chain. 

It must be noted that the value of Ap depends on the Relation between different polymer  chain models 
distance between the given monomer and the closest inho- We consider here whether it is possible to find an equiva- 
mogeneity. Thus the characteristics of  the interaction of lent chain of beads for each polymer chain in such a way 
quasimonomer depends on the position o f  the correspond- that all the macroscopic conformational characteristics of 
ing bare monomer in the chain, the two corresponding coils coincide. 

Only some of  the problems for which the concept of  It is well-known that in the model of  beads with correla- 
quasimonomers can be useful were considered in this paper, tions given by equation (1), the macroscopic conformational 
We expect that the same methods can be applied to the characteristics of  a polymeric coil depend (in the universality 
analysis of  other problems, in which the departure of the region T >  0) onl~¢ on two combinations of  the parameters 
polymer chain from the infinite homogeneous structure is of the model: Na z and N1/2B*/a 3. It was shown above, that 
present. The theory of  block copolymer solutions and the a dependence only on the effective coefficient B* among all 
theory of  polymer solutions in mixed solvents can be regar- the characteristics of  monomer -monomer  volume interac- 
ded as examples of  this kind. As to the concentrated poly- tion is a general property of  all polymeric coils. Thus we 
mer solutions, here it is interesting to relate the concept of  assume that the dependence of  macroscopic characteristics 
quasimonomers and the new Flory theory, on only two combinations of the parameters (analogous to 

Finally, the method of  quasimonomers has been used Na 2 and N1/2B*/a 3 in the model of beads) is also a general 
together with the classical methods (perturbation theory, property of every coil. This is the basic assumption of  the 
Flory theory). It would be very interesting to include the so-called two parameter theory. 
concept of  quasimonomers in the general picture o f  the It must be noted that the two combinations o f  parameters 
polymer-magnetic analogy 21-22'4 and to calculate the con- have a definite ph~'sical meaning for the model of  beads: 
formational properties by means of  the consistent renorma- Na 2 is equal to (RZ)0, i.e. to the mean square end-to-end dis- 
lizationgroup approach, because it is well-known that such tance in the absence of volume interactions, 
a calculation gives more exact results than the classical and Z =N1/2B*/a 3 is a single-valued function of the expan- 
methods. This will be the subject of  a further study, sion factor o f  the coil, (see ref 4) 
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Analysis of  the properties of  the persistence model with the 
\ help of  the equivalent chain of  beads.just determined can be 

found in ref 23. 
We now divide the persistence chain into pieces of length 

d (Case 2); hence N2 = L/d. Since in this case 

(R 2) 0 = N2 dl 2 = Npd 2 
l 

where p = l/d, we must choose a2 = pl/2d. B~ for this case 
can be found from the condition Z 1 = Z2, i.e.: 

a r l /2o*/  3 " 1  " l  /a l  = N1/2B~/a~ 

It follows from this equation that B~ ~ d3 r .  
In physical applications, either the first or the secoild 

Figure A 1 Persistence model of a polymer chain representation of  the polymer chain can be used. 
It should be pointed out that for flexible chains l ~ d, 

so there is no difference between these two representations. 
t~ 2 = ot2(Z) ~ (R2)/(R2)0 If we take into account the estimation B* ~ vr, it turns out 

that in the case of the equivalent chain of beads we have 

Thus if the assumption of  the two-parameter theory is v ~ a 3, i.e. this chain is of  the type shown in Figure 3a. The 
size of each bead is ~ d and the number of  beads is equal to 

valid, it is possible to find a chain of  beads which is equiva- 
lent to the given chain: one must choose the parameters des- the length to width ratio of  the chain. 

For stiff chains p = lid >> 1 and thus in both representa- 
cribing the chain of  beads in such a way that the values of  tions v ~ a 3, so the equivalent chain of  beads is of  the type 
(R 2) 0 and ct 2 will be the same as for the initial chain. Then shown in Figure 3b. The properties of the coil of  beads and 
all the other macroscopic conformational  characteristics of 
the coil of  beads and of the initial coil will also coincide, of the persistence stiff chain coil are, of course, equivalent 
i.e. these two chains will be equivalent, only in the absence of  orientational ordering, i.e. in the 

Since in order to specify the chain of  beads it is necessary absence of the intramolecular l iquid-crystal l ine phase. 

to assign three parameters N, a and B*, and we have imposed 
only two conditions, one of these parameters can be chosen 
arbitrarily. This corresponds to the fact that the initial chain 
can be arbitrarily divided into monomers,  i.e. the value of  N APPENDIX 2 
can be chosen arbitrarily, but  the values of  a and B* are 
definite for a given N. The choice of an elementary mono- Expansion factor for branched maeromolecules in good 
mer must satisfy only one condition, viz. it is necessary that  solvents 
this monomer does not interact with itself, otherwise it cer- Equations ( 4 ) - ( 6 )  seem to be valid for good solvents; in 
tainly will not  be an elementary monomer.  For example, one this case the second term on the right-hand side is much 
cannot choose an elementary monomer of  length greater smaller than the first and can be neglected. Thus we arrive 
than the persistence length of  the chain, at the usual F lo ry -P t i t syn  equations16: 

As an example, we consider the persistence model of  a 
polymer chain and find the equivalent model  of beads for Case l : t~ 5 - (x 3 ~ rN  1/2 
it. In the persistence model the polymer  chain is represented 
as a long flexible elastic filament of  width d and of  persis- Case 2: ct 5 - c~ 3 ~ rN1/2o3/2 
tence length I (Figure A 1). The sections of this chain inter- 
act with some linear density o f  interaction. It is clear that Case 3 : a 5 - c~ 3 ~ r N  1/203/2 (A l) 
such a model is more realistic than the model of beads. 

First of all, it is necessary to determine the method of It can be seen from (A1) that according to the F l o r y -  
dividing of  the persistence chain into monomers.  Since for Ptitsyn theory the expansion factor of a branched macro- 
this chain we have two characteristic lengths d and l, we molecule, tx, is greater than that of  a linear macromolecule 
divide the chain either into sections of  length I or into sec- of the same molecular weight and increases with an increase 
tions of  length, d. In these two cases we shall obtain two dif- in the degree of branching. 
ferent but  equivalent chains of beads. At the same time experimental data 24 show the opposite 

First let the chain be divided into sections of  length l trend. Recently, a direct computer  experinaent for star- 
(Case 1). Then N1 is the number of  persistence lengths in branched polymers was carried out and it was revealed that 
the chain N1 = L/l, where L is the total  length of  the chain, these macromolecules expand less in a good solvent than 
Since in this case (R 2) 0 = N1 12 , in order to satisfy the con- linear macromolecules of  the same molecular weight, the 
dition of coincidence between (R 2) 0 for the persistence expansion factor decreasing with an increase in the degree of  
chain and for the equivalent chain of  beads, we have to branching. Below we shall try to explain this fact and to 
choose al  = I. The parameter  B* will in this case coincide develop a simple theory of  the expansion of branched 
in order of  magnitude with the second virial coefficient of macromolecules in good solvents. 
the interaction of cylinders of  diameter d and of  length l, The average monomer  concentration within the branched 
i.e. B~ ~ dl2r, where r = (T - 0)/0. Thus all the parameters macromolecule is essentially higher than within the linear 
for the equivalent model of  beads are determined, one. Thus it turns out that each of the linear chains which 
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form the branched macromolecule, is situated in a concen- The expansion factor a"  in the second step can be deter- 
trated solution of other chains, the concentration corres- mined by usual methods. Asymptotically, at high c~": 
ponding (from the local point of view) to the semidilute 
polymer solution. It is well-known that in the semidilute (a,,)5 ~ ~1/2 ~ (n/o)l/2 
region the expansion factor of a linear macromolecule de- 
creases with an increase in the average monomer concent- 
ration in the solution, c26: where N = n/a is the number of persistence lengths in the 

worm-like filament. Thus: 
(a') 2 ~ (CV) 1/47"1/4 (A2) 

where v is the volume of a monomer. We suppose that it is a5 = ( a')5(a' ')5 = rN1/2°-3/2 (A5) 
this concentration-dependent decrease in the dimensions of 
linear chains forming the branched macromolecules which The result (equation A5) is asymptotically valid at a ~" 1. It 
is responsible for the smaller expansion of branched poly- can be written in the more usual Flory form: 
mers in good solvents in comparison with linear polymers. 

We shall consider in detail the relatively more complex rN1/2 
Case 2 (1 ,~ o ,~n); for other cases we shall give only the a 5 - a 3 = constant x - - -  (A6) 
final result, o-3/2 

The expansion factor of the macromolecule in Case 2 (a 
thick comb) is calculated in two steps. In the first step we It is necessary, however, to bear in mind that equation (A6) 
obtain the expansion factor a '  of the section of secondary is not valid at small r, because equation (A2) can be applied 
structure encircled with a dotted line in Figure 5 due to the only to the region of semidilute solutions in good solvents 
repulsion of monomers within this section. Thus we deter- (the temperature-concentration boundaries of  this region 
mine the parameters of the worm-like filament (its width have been specified in ref 26). 
and its persistence length, which are of the same order in For the star-like polymer (o >> n) we obtain the analogous 
this case), which can be substituted for the comb-like result: 
macromolecule. We consider this filament to be impene- 

rN1/2 trable in the good solvent region. In the second step the a 5 - a 3 = constant x n3/2 
expansion factor a"  of  the worm-like impenetrable ilia- - - -  (AT) 
merit is determined using the standard methods. The 
expansion factor of the entire macromolecule (which approxi- For comb-like polymers with o ,~ 1 it turns out that a does 
mately coincides with the expansion factor of the backbone) not change considerably in comparison with the case of  linear 
is equal to the product o f a '  and or"" a = a'a". polymers: 

We therefore consider the section of secondary structure 
which has a length along the backbone of the same order as a 5 - a 3 -'- constant x rN 1/2 (A8) 
the length of branches (Figure 5). In this section there are 
~o  linear side chains, each of these chains containing ~N/n It is seen from equations (A6)-(A8)that  the value of a 
monomers. The average concentration c of monomers in for the branched polymer is smaller than for the linear 
this section is equal to: polymer with the same N and decreases with an increase in 

the degree of branching. This is in agreement with the ex- 
N perimentally observed behaviour. 

- - O  
n 1 ( N )  l/2 Equations (A6)-(A8),  which take into account the 

c ~ ~ , )3L ~ (a,)3a 3 o (A3) concentration-dependent decrease of the dimensions of 
chains forming the branched macromolecule, differ consi- 

where LO ~ (N/n)l/2a gives the unperturbed dimensions of  derably from equations (A1) of the Flory-Ptitsyn theory, 
this section. On the other hand, the concentration in equation which is thus not valid in the good solvent region. This is 
(A3) corresponds to the region of semidihite solutions (this a consequence of the fact that the behaviour of semidilute 

good solutions cannot be correctly described by means of 
can be verified after the final result is obtained), thus equa- mean field theories (in particular, by means of the Flory 
tion (A2) must be valid for iv'. Eliminating c from equations theory) - equation (A2) is not valid in these theories 26. At 
(A2) and (A3), we have: the same time the mean field theories are qualitatively valid 

in the vicinity of the 0 point 26. Thus the Flory-type theory 
(~')5 ~ _ (A4) can be used in the analysis of the 0 behaviour of branched 

o macromolecules (see above). 
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